Toz akışkanlığını etkileyen beş faktör

Toz, parçacıkları üzerindeki kuvvetlerin dengesizliği nedeniyle akar. Parçacıklar üzerindeki kuvvetler yerçekimi, yapışma, sürtünme ve elektrostatik kuvveti içerir. Toz akışı üzerindeki en büyük etkiler yerçekimi ve yapışmadır. Toz akışkanlığını etkileyen birçok faktör vardır. Parçacık boyutu dağıtım ve şekil anahtardır. Akışkanlığı büyük ölçüde etkilerler. Ayrıca, sıcaklık, su içeriği ve nem gibi faktörler toz akışkanlığını etkiler. Elektrostatik voltaj, gözeneklilik, yığın yoğunluğu ve bağlanma indeksi de aynı şekilde. Toz akışkanlığını etkileyen faktörleri analiz etmek hayati önem taşır. Bunu bilimsel yöntemler kullanarak ölçmek gerekir.

Toz Uygulaması

Toz mühendisliği belirli bir toz işleme üretim bölümünde toz işleme teknolojisi ve ilgili doğal bilim teorilerini kullanmanın bilgisi ve yöntemleridir. Toz teknolojisi, teknik sorunları çözmek için fikir ve becerilerdir. Toz mühendisliği, üretim sorunlarını çözmek için sistematik bir yöntemdir. Temelinde toz teknolojisini ve ilgili teknolojileri kullanır. Malzeme anadalı olarak, bu mühendislik toz işleme teknolojisinde ustalaşmalısınız.

Toz mühendisliği, toz için kullanılan bir terimdir toz uygulama teknolojiler. Endüstriyel üretimde kullanılırlar. Parçacıkların ve tozların özelliklerine ve davranışlarına dayanırlar. Sistematik bilgi ve yöntemler uygular. Tozların özelliklerini inceleriz. Daha sonra davranışlarını kontrol eder ve toz işlemede çeşitli birim operasyonları uygularız.

Toz mühendisliği birçok birim operasyonunu kapsar. Bunlara kırma, tozlaştırma, sınıflandırma, depolama, doldurma ve taşıma dahildir. Ayrıca granülasyon, karıştırma, filtreleme, sedimantasyon, konsantrasyon, toz toplama, kurutma, çözünme, kristalleştirme, dispersiyon, şekillendirme ve sinterleme dahildir.

Toz mühendisliği birçok endüstride yaygın olarak kullanılır. Bunlara inşaat malzemeleri, makine, enerji, plastik, kauçuk, madencilik, metalurji, tıp, gıda, yem, pestisitler, gübreler, kağıt yapımı ve çevre koruma dahildir. Ayrıca bilgi, havacılık, uzay ve ulaşımda da kullanılır.

Toz akışkanlığını etkileyen beş faktör

Parçacık boyutu:

Tozun yüzey alanı, parçacık boyutuyla ters orantılıdır. Toz parçacık boyutu ne kadar küçükse, özgül yüzey alanı o kadar büyüktür. Toz parçacık boyutu azaldıkça birkaç şey olur. İlk olarak, tozlar arasındaki moleküler ve elektrostatik çekim artar. Bu, parçacıkların akışkanlığını azaltır. İkinci olarak, daha küçük parçacıkların adsorpsiyon ve aglomerasyon olasılığı daha yüksektir. Bu, kohezyonu artırır, durma açısını yükseltir ve akışkanlığı azaltır. Üçüncüsü, daha küçük parçacıklar daha yoğun bir şekilde paketlenir. Bu, hava geçirgenliğini azaltır, sıkıştırma oranını artırır ve akışkanlığı düşürür.

Morfoloji:

Parçacık boyutu önemlidir. Parçacık şekli de önemlidir. Her ikisi de akışkanlığı etkiler. Aynı parçacık boyutuna ve farklı şekillere sahip tozlar farklı akışkanlıklara sahiptir. Küresel parçacıklar en küçük temas alanına ve en iyi akışkanlığa sahiptir. İğne benzeri parçacıkların birçok düzlemsel temas noktası vardır. Düzensiz parçacıklar arasındaki kesme kuvvetleri akışkanlığı azaltır.

Sıcaklık:

Isıl işlem tozun hacim ve musluk yoğunluklarını artırabilir. Bunun nedeni, toz parçacık yoğunluğunun sıcaklık yükseldikten sonra artmasıdır. Ancak, yüksek sıcaklıklarda tozun akışkanlığı azalır. Bunun nedeni, toz parçacıkları ile kabın duvarı arasındaki artan yapışmadır. Sıcaklık tozun erime noktasını aşarsa, sıvı hale gelir. Bu, yapışmayı daha güçlü hale getirir.

Nem içeriği:

Toz kuru olduğunda akışkanlık genellikle iyidir. Çok kuruysa, parçacıklar statik elektrik nedeniyle birbirini çeker. Bu akışkanlığı kötüleştirir. Az miktarda su ile parçacıkların yüzeyine adsorbe edilir. Bu, tozun akışkanlığı üzerinde çok az etkisi olan yüzeye adsorbe edilmiş su oluşturur. Su içeriği arttıkça, parçacıkların adsorbe edilmiş suyunun etrafında bir film oluşur. Bu, hareketlerine karşı direnci artırır ve tozun akışkanlığını azaltır. Su içeriği maksimum bağlı suyu aştığında akışkanlık düşer. Daha fazla su, daha düşük akışkanlık indeksi anlamına gelir. Bu, toz akışkanlığını kötüleştirir.

Toz parçacıkları arasındaki etkileşim:

Toz parçacıkları arasındaki sürtünme ve kohezyon akışkanlıklarını büyük ölçüde etkiler. Farklı parçacık boyutları ve şekilleri toz akışkanlığını etkiler. Tozların kohezyonunu ve sürtünmesini değiştirirler. Büyük bir toz boyutunda akışkanlık toz şekline bağlıdır. Hacim kuvveti parçacıklar arasındaki kohezyondan çok daha büyüktür. Pürüzlü yüzeylere veya düzensiz şekillere sahip toz parçacıklarının akışkanlığı daha iyi olabilir. Çok küçük toz parçacıklarında akışkanlık parçacık kohezyonuna bağlıdır. Hacim kuvveti bu kohezyondan çok daha küçüktür.

Toz nem içeriği tespit yöntemi:

1. Fırın yöntemi

Fırın yöntemine fırın da denir kurutma yöntem veya piroliz ağırlık kaybı yöntemi. Numuneyi sabit bir ağırlığa ulaşana kadar normal basınçta 105±2℃'de bir fırında kurutun. Kaybedilen ağırlık sudur. Yani, 105℃'deki nem içeriği, numuneyi kurutmadan önce ve sonra tartarak bulunur. İki kurutma yöntemi vardır: normal basınç ve azaltılmış basınç. Prensipleri aynıdır.

Formül: (kurutulmadan önceki ağırlık – kurutulduktan sonraki ağırlık) ÷ kurutulmadan önceki ağırlık × 100 = nem (%)

Hesaplama formülü: (W1-W2) / (W1-W0) × 100 = nem (%)

Burada: W1 = 105℃'de kurutulmadan önce numunenin ve tartım kabının ağırlığı (g);

W2 = 105℃'de kurutulduktan sonra numunenin ve tartım kabının ağırlığı (g);

W0 = sabit ağırlığa (g) ulaşan tartım kabının ağırlığı

2. Hızlı nem ölçer belirleme yöntemi:

Numuneyi tepsiye koyun ve başlat'a tıklayın. Test sonucu hesaplamaya gerek kalmadan 3-5 dakika içinde hazır olacaktır.

İçindekiler

EKİBİMİZLE İLETİŞİME GEÇİN

Lütfen aşağıdaki formu doldurun.
Uzmanlarımız makine ve proses ihtiyaçlarınızı görüşmek üzere 6 saat içinde sizinle iletişime geçecektir.

    Lütfen aşağıdaki seçeneği seçerek insan olduğunuzu kanıtlayın: bardak.